Superstability, noetherian rings and pure-semisimple rings
نویسندگان
چکیده
Abstract We uncover a connection between the model-theoretic notion of superstability and that noetherian rings pure-semisimple rings. characterize via class left modules with embeddings. Theorem 0.1 For ring R following are equivalent. (1) is noetherian. (2) The R-modules embeddings superstable. (3) every ? ? | + ? 0 , there ? such has uniqueness limit models cardinality ?. (4) Every model in ?-injective. pure 0.2 pure-semisimple. There exists ( ) ?. ?-pure-injective. Both equivalences provide evidence could shed light understanding algebraic concepts. As this paper aimed at theorists algebraists an effort was made to background for both.
منابع مشابه
Fully Bounded Noetherian Rings
Let i : A → R be a ring morphism, and χ : R → A a right R-linear map with χ(χ(r)s) = χ(rs) and χ(1 R) = 1 A. If R is a Frobenius A-ring, then we can define a trace map tr : A → A R. If there exists an element of trace 1 in A, then A is right FBN if and only if A R is right FBN and A is right noetherian. The result can be generalized to the case where R is an I-Frobenius A-ring. We recover resul...
متن کاملSuperdecomposable pure injective modules over commutative Noetherian rings
We investigate width and Krull–Gabriel dimension over commutative Noetherian rings which are “tame” according to the Klingler–Levy analysis in [4], [5] and [6], in particular over Dedekind-like rings and their homomorphic images. We show that both are undefined in most cases.
متن کاملOn Nonnil-Noetherian Rings
Let R be a commutative ring with 1 such that Nil(R) is a divided prime ideal of R. The purpose of this paper is to introduce a new class of rings that is closely related to the class of Noetherian rings. A ring R is called a Nonnil-Noetherian ring if every nonnil ideal of R is finitely generated. We show that many of the properties of Noetherian rings are also true for Nonnil-Noetherian rings; ...
متن کاملRigid left Noetherian rings
Let R be an associative ring. A map σ : R → R is called a ring endomorphism if σ(x+y) = σ(x)+σ(y) and σ(xy) = σ(x)σ(y) for all elements a,b ∈ R. A ring R is said to be rigid if it has only the trivial ring endomorphisms, that is, identity idR and zero 0R . Rigid left Artinian rings were described by Maxson [9] and McLean [11]. Friger [4, 6] has constructed an example of a noncommutative rigid r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Pure and Applied Logic
سال: 2021
ISSN: ['0168-0072', '1873-2461']
DOI: https://doi.org/10.1016/j.apal.2020.102917